## CMOS 8-bit Single Chip Microcomputer

## Description

The CXP7400P10 is a CMOS 8-bit microcomputer integrating on a single chip an A/D converter, serial interface, timer/counter, time-base timer, capture timer/counter, remote control receive circuit, PWM output, and the like besides the basic configurations of 8-bit CPU, ROM, RAM, and I/O port.
The CXP7400P10 also provides the sleep/stop functions that enable lower power consumption.
The CXP7400P10 is the PROM-incorporated version of the CXP740056/740096/740010 with builtin mask ROM. This provides the additional feature of being able to write directly into the program. Thus, it is most suitable for evaluation use during system development and for small-quantity production.


## Structure

Silicon gate CMOS IC

## Features

- A wide instruction set (211 instructions) which covers various types of data.
- 16-bit arithmetic/multiplication and division/Boolean bit operation instructions
- Minimum instruction cycle
- Incorporated PROM capacity
- Incorporated RAM capacity
- Peripheral functions
- A/D converter
- Serial interface
- Timer
— Remote control receive circuit
- PWM output
- Interruption
- Standby mode
- Package

167 ns at 24 MHz operation ( 4.5 to 5.5 V ) 333 ns at 12 MHz operation ( 2.7 to 5.5 V ) $122 \mu$ s at 32 kHz operation ( 2.7 to 5.5 V ) 120K bytes 4096 bytes

8 bits, 8 channels, successive approximation method (Conversion time $10.3 \mu$ s at 24 MHz )
Srart-stop synchronization (UART), 1 channel Incorporated buffer RAM (Auto transfer for 1 to 32 bytes), 2 channels 8-bit clock syncronization (MSB/LSB first selectable), 1 channel 8 -bit timer 2 channels, 8 -bit timer/counter 2 channels, 19-bit time-base timer, 16-bit capture timer/counter 32 kHz timer/counter
Noise elimination circuit 8 -bit pulse measuring counter, 6 -stage FIFO 12 bits, 2 channels
22 factors, 15 vectors, multi-interruption possible Sleep/stop
100-pin plastic QFP/LQFP

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
Block Diagram


Pin Assignment (Top View) 100-pin QFP package


Note) 1. Vpp (Pin 90) is left open.
2. Vss (Pins 41 and 88 ) are both connected to GND.

Pin Assignment (Top View) 100-pin LQFP package


Note) 1. Vpp (Pin 88) is left open.
2. Vss (Pins 39 and 86 ) are both connected to GND.

Pin Description

| Symbol | 1/0 |  | Description |
| :---: | :---: | :---: | :---: |
| PA0 to PA7 | I/O | (Port A) <br> 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the program in a unit of single bits. <br> (8 pins) |  |
| PB0 to PB3 | I/O | (Port B) <br> 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the program in a unit of single bits. <br> (8 pins) |  |
| PB4/TO2 | I/O/Output |  | 16-bit timer/counter rectangular wave output. |
| PB5/SCK2 | I/O///O |  | Serial clock I/O (CH2). |
| PB6/SO2 | I/O/Output |  | Serial data output (CH2). |
| PB7/SI2 | I/O/Input |  | Serial data input (CH2). |
| PC0 to PC7 | I/O | (Port C) <br> 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the program in a unit of single bits. <br> (8 pins) |  |
| PD0 to PD7 | I/O | (Port D) <br> 8 -bit I/O port. I/O can be set in a unit of single bits. Can drive 12 mA sink current. Incorporation of pull-up resistor can be set through the program in a unit of single bits. <br> (8 pins) |  |
| PE0/INTO | Input/Input | (Port E) <br> 8-bit port. Lower 2 bits are for input; upper 6 bits are for output. <br> (8 pins) | External interrupt inputs. (2 pins) |
| PE1/INT2 | Input/Input |  |  |
| PE2/PWM0 | Output/Output |  | 12-bit PWM outputs. (2 pins) |
| PE3/PWM1 | Output/Output |  |  |
| PE4 to PE7 | Output |  |  |
| PFO/AN4 <br> to PF7/AN11 | I/O/Input | (Port F) <br> 8-bit I/O port. I/O can be set in a unit of single bits. PF4 to PF7 can be set in a unit of single bits as standby release inputs. Incorporation of pull-up resistor can be set through the program in a unit of single bits. ( 8 pins) | Analog inputs to A/D converter. (8 pins) |


| Symbol | 1/O | Description |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PG0/TxD | I/O/Output | (Port G) <br> 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the program in a unit of single bits. (8 pins) | UART transmission data output. |  |
| PG1/RxD | I/O/Input |  | UART reception data input. |  |
| PG2/EC0 | I/O/Input |  | External event input for 8-bit timer/counter 0. |  |
| PG3/EC1 | I/O/Input |  | External event input for 8-bit timer/counter 2. |  |
| PG4/EC2 | I/O/Input |  | External event input for 16-bit timer/counter. |  |
| PG5/INT3 | I/O/Input |  | External interrupt inputs. (2 pins) |  |
| PG6/INT4 | I/O/Input |  |  |  |
| PG7/CINT | I/O/Input |  | External capture input to 16-bit timer/counter. |  |
| PH0 to PH7 | Output | (Port H) <br> 8-bit output port. Operated as N -ch open drain output for medium voltage drive (12V) and large current (12mA). <br> (8 pins) |  |  |
| PI1/RMC | I/O/Input | (Port I) <br> 7-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the program in a unit of single bits. <br> (7 pins) | Remote control receiver circuit input. |  |
| Pl2/NMI | I/O/Input |  | Non-maskable interrupt input. |  |
| PI3/TOO/ <br> ADJ | I/O/Output/ Output |  | Output for the 8-bit timer/counter 1 rectanguler waves and TEX oscillation frequency demultiplication. |  |
| $\frac{\mathrm{P} 14 / \mathrm{INT} 1 /}{\mathrm{CS} 1}$ | I/O/Input/ Input |  | External interrupt input. | Chip select input for serial interface (CH1). |
| PI5/SCK1 | I/O///O |  | Serial clock I/O (CH1). |  |
| Pl6/SO1 | I/O/Output |  | Serial data output (CH1). |  |
| PI7/SI1 | I/O/Input |  | Serial data input (CH1). |  |
| PJ0 to PJ7 | I/O | (Port J) <br> 8 -bit I/O port. I/O can be set in a unit of single bits. <br> Standby release input can be set in a unit of single bits. <br> Incorporation of pull-up resistor can be set through the program in a unit of single bits. <br> (8 pins) |  |  |
| PK1/TX | Input | (Port K) <br> 7-bit port. Lower 2 bits are for input; upper 5 bits are for I/O. I/O can be set in a unit of single bits. <br> For PK3 to PK7, incorporation of pull-up resistor can be set through the program in a unit of single bits. <br> (7 pins) | Crystal connectors for 32-kHz timer/counter clock oscillation circuit. <br> For usage as event counter, connect clock oscillation source to TEX, and leave TX open. |  |
| PK2/TEX | Input/Input |  |  |  |
| PK3/SCK0 | I/O/// |  | Serial clock I/O (CHO). |  |
| PK4/SO0 | I/O/Output |  | Serial data output (CHO). |  |
| PK5/SIO | I/O/Input |  | Serial data input (CHO). |  |
| PK6/CS0 | I/O/Input |  | Chip select input for serial inteface (CH0). |  |
| PK7/TO1 | I/O/Output |  | 8 -bit timer/counter 3 rectangular wave output. |  |


| Symbol | I/O | Description |
| :--- | :--- | :--- |
| AN0 to AN3 | Input | Analog inputs to A/D converter. <br> (4 pins) |
| EXTAL | Input | Connects a crystal for system clock oscillation. When a clock is supplied <br> externally, input it to EXTAL pin and input a reversed phase clock to XTAL <br> pin. |
| XTAL |  | System reset; active at Low level. |
| $\overline{\text { RST }}$ | Input | Positive power supply pin for incorporated PROM writing. <br> Leave this pin open for normal operation. <br> (Connected to VDD internally.) |
| Vpp |  | Positive power supply of A/D converter. |
| AVDD |  | Reference voltage input of A/D converter. |
| AVREF | Input | GND of A/D converter. |
| AVSS |  | Positive power supply. |
| VDD |  | GND. Connect both Vss pins to GND. |
| VSS |  |  |

I/O Circuit Format for Pins

| Pin | Circuit format | After a reset |
| :---: | :---: | :---: |
| PA0 to PA7 <br> PB0 <br> PB2 <br> PC0 to PC7 <br> 18 pins |  | Hi-Z |
| PB1 <br> PB3 <br> 2 pins | Port B | Hi-Z |
| PB4/TO2 <br> PI3/TO0/ADJ <br> PK7/TO1 <br> 3 pins |  | $\mathrm{Hi}-\mathrm{Z}$ |


| Pin | Circuit format | After a reset |
| :---: | :---: | :---: |
| PB5/ $\overline{\text { SCK2 }}$ PI5/SCK1 PK3/ $\overline{\text { SCK }}$ <br> 3 pins |  | Hi-Z |
| PB6/SO2 <br> PG0/TxD <br> PI6/SO1 <br> PK4/SO0 <br> 4 pins |  | Hi-Z |


| Pin |  | Circuit format | After a reset |
| :---: | :---: | :---: | :---: |
| PB7/S12 <br> PG1/RxD <br> PG2/EC0 <br> PG3/EC1 <br> PG4/EC2 <br> PG5/INT3 <br> PG6/INT4 <br> PG7/CINT <br> PI1/RMC <br> $\mathrm{PI} 2 / \overline{\mathrm{NMI}}$ <br> PI4/NT1/ट्CS1 <br> PI7/SI1 <br> PK5/SIO <br> PK6/CS0 <br> 14 pins | $\begin{aligned} & \hline \text { Port B } \\ & \hline \text { Port G } \\ & \hline \text { Port I } \\ & \hline \text { Port K } \end{aligned}$ |  | Hi-Z |
| PD0 to PD7 <br> 8 pins | Port D <br> Interna |  | Hi-Z |
| PEO/INTO PE1/INT2 <br> 2 pins | Port E |  | Hi-Z |


| Pin | Circuit format | After a reset |
| :---: | :---: | :---: |
| PE2/PWM0 PE3/PWM1 <br> 2 pins | Port E | Hi-Z |
| PE4 <br> PE5 <br> 2 pins | Port E | Hi-Z |
| PE6 <br> 1 pin | Port E | "H" level |
| PE7 <br> 1 pin | Port E | " H " level $\left(\begin{array}{l}\text { "H" level } \\ \text { at ON } \\ \text { resistance } \\ \text { of pull-up } \\ \text { transistor } \\ \text { during a } \\ \text { reset. }\end{array}\right)$ |
| AN0 to AN3 <br> 4 pins | Input multiplexer | Hi-Z |


| Pin | Circuit format | After a reset |
| :---: | :---: | :---: |
| PFO/AN4 to PF3/AN7 <br> 4 pins | Port F | Hi-Z |
| PF4/AN8 <br> to <br> PF7/AN11 <br> 4 pins | Port F | Hi-Z |

\begin{tabular}{|c|c|c|}
\hline Pin \& Circuit format \& After a reset \\
\hline \begin{tabular}{l}
\[
\mathrm{PH} 0 \text { to } \mathrm{PH} 7
\] \\
8 pins
\end{tabular} \& Port H \& Hi-Z \\
\hline PJ0 to PJ7

8 pins \& Port J \& Hi-Z <br>

\hline | PK1/TX PK2/TEX |
| :--- |
| 2 pins | \& Port K \& Oscillation stop port input <br>

\hline
\end{tabular}

| Pin | Circuit format | After a reset |
| :---: | :---: | :---: |
| EXTAL <br> XTAL <br> 2 pins |  | Oscillation |
| $\overline{\mathrm{RST}}$ <br> 1 pin |  | "L" level (during a reset) |

Absolute Maximum Ratings
（Vss＝OV reference）

| Item | Symbol | Rating | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| Supply voltage | Vdo | -0.3 to +7.0 | V |  |
|  | Vpp | -0.3 to +13.0 | V | Incorporated PROM |
|  | AVDD | AVss to $+7.0^{* 1}$ | V |  |
|  | AVss | -0.3 to +0.3 | V |  |
|  | AVRef | AVss to +7.0 | V |  |
| Input voltagte | VIN | -0.3 to $+7.0 * 2$ | V |  |
| Output voltage | Vout | -0.3 to $+7.0^{* 2}$ | V |  |
| High level output current | Іон | －5 | mA | Output（value per pin） |
| High level total output current | Г⿺夂卜 | －50 | mA | Total for all output pins |
| Low level output current | IoL | 15 | mA | All pins excluding large current outputs（value per pin） |
|  | locc | 20 | mA | Large current outputs（value per pin）＊3 |
| Low level total output current | EloL | 100 | mA | Total for all output pins |
| Operating temperature | Topr | -20 to +75 | ${ }^{\circ} \mathrm{C}$ |  |
| Storage temperature | Tstg | -55 to＋150 | ${ }^{\circ} \mathrm{C}$ |  |
| Allowable power dissipation | Pd | 600 | mW | QFP package |
|  |  | 380 |  | LQFP package |

＊1 AV DD and $\mathrm{V}_{\mathrm{dD}}$ must be set to the same voltage．
＊2 Vin and Vout must not exceed VdD +0.3 V ．
＊3 The large current output pins are Port D and H（PD，PH）．
Note）Usage exceeding absolute maximum ratings may permanently impair the LSI．Normal operation should be conducted under the recommended operating conditions．Exceeding these conditions may adversely affect the reliability of the LSI．

Recommended Operating Conditions
(Vss = 0V reference)

| Item | Symbol | Min. | Max. | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply voltage | Vdo | 4.5 | 5.5 | V | Guaranteed operation range for $1 / 2$ and $1 / 4$ frequency dividing clock |
|  |  | 2.7 | 5.5 | V |  |
|  |  | 2.7 | 5.5 | V | Guaranteed operation range for 1/16 frequency dividing clock or sleep mode |
|  |  | 2.7 | 5.5 | V | Guarantteed operaion range for TEX |
|  |  | 2.5 | 5.5 | V | Guaranteed data hold operation range during stop mode |
| Analog voltage | AVdd | 2.7 | 5.5 | V | ${ }^{*} 1$ |
| High level input voltage | VIH | 0.7 VdD | Vdo | V | *2, *6 |
|  |  | 0.8VDD | Vdo | V | *2, *7 |
|  | VIHs | 0.8 VDD | VdD | V | Hysteresis input*3 |
|  | Vihex | VDD - 0.4 | VdD +0.3 | V | EXTAL pin*4, *6, TEX pin*5, *6 |
|  |  | VDD -0.2 | $V_{D D}+0.2$ | V | EXTAL pin ${ }^{* 4, * 7, ~ T E X ~ p i n * 5, ~ * 7 ~}$ |
| Low level input voltage | VIL | 0 | 0.3 VdD | V | *2, *6 |
|  |  | 0 | 0.2 VbD | V | *2, *7 |
|  | VILS | 0 | 0.2 VDD | V | Hysteresis input*3 |
|  | VILEX | -0.3 | 0.4 | V | EXTAL pin ${ }^{* 4, * 6, ~ T E X ~ p i n ~}{ }^{* 5, * 6}$ |
|  |  | -0.3 | 0.2 | V | EXTAL pin*4, *7, TEX pin*5, *7 |
| Operating temperature | Topr | -20 | +75 | ${ }^{\circ} \mathrm{C}$ |  |

${ }^{* 1} \mathrm{AV} V_{D D}$ and $V_{D D}$ must be set to the same voltage.
*2 Normal input port (PA, PB0, PB2, PB4, PB6, PC, PD, PF, PG0, PI3, PI6, PJ, PK1, PK2, PK4, PK7)
*3 $\overline{\mathrm{RST}}, \mathrm{PB} 1, \mathrm{~PB} 3, \mathrm{~PB} 5 / \overline{\mathrm{SCK} 2}, \mathrm{~PB} 7 / \mathrm{SI} 2, \mathrm{PE} 0 / \mathrm{INT0}, \mathrm{PE} 1 / \mathrm{NT} 2, \mathrm{PG} 1 / \mathrm{RxD}, \mathrm{PG} 2 / \overline{\mathrm{EC} 0}, \mathrm{PG} 3 / \overline{\mathrm{EC} 1}, \mathrm{PG} 4 / \overline{\mathrm{EC} 2}$,
 PK5/SIO, PK6/ $\overline{\text { CS0 }}$
*4 Specifies only when the external clock is input.
*5 Specifies only when the external event count is input.
*6 This case applies to the range of 4.5 to 5.5 V supply voltage (Vod).
*7 This case applies to the range of 2.7 to 5.5 V supply voltage (VDD).

## Electrical Characteristics

DC Characteristics (VDD $=4.5$ to 5.5 V )
( $\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

| Item | Symbol | Pins | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High level output voltage | VOH | PA to PD, PE2 to PE7, PF to PG, PI to PJ, PK3 to PK7 | $\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{loH}=-0.5 \mathrm{~mA}$ | 4.0 |  |  | V |
|  |  |  | V DD $=4.5 \mathrm{~V}, \mathrm{loH}=-1.2 \mathrm{~mA}$ | 3.5 |  |  | V |
|  |  | $\begin{aligned} & \text { PB5, PB6*1, } \\ & \text { PGO*1, } \\ & \text { PI5, PI6*1, } \\ & \text { PK3, PK4*1 } \end{aligned}$ | $\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{loH}=-1.0 \mathrm{~mA}$ | 4.0 |  |  | V |
|  |  |  | $\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{loH}=-2.4 \mathrm{~mA}$ | 3.5 |  |  | V |
| Low level output voltage | Vol | PA to PD, PE2 to PE7, PF to PG, PI to PJ, PK3 to PK7 | $\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=1.8 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  |  | $\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=3.6 \mathrm{~mA}$ |  |  | 0.6 | V |
|  |  | PD, PH | $\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{loL}=12.0 \mathrm{~mA}$ |  |  | 1.5 | V |
| Input current | IIHE | EXTAL | $\mathrm{V} D \mathrm{LD}=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{IH}=5.5 \mathrm{~V}$ | 0.5 |  | 40 | $\mu \mathrm{A}$ |
|  | IILE |  | $\mathrm{VDD}=5.5 \mathrm{~V}, \mathrm{VIL}=0.4 \mathrm{~V}$ | -0.5 |  | -40 | $\mu \mathrm{A}$ |
|  | ІІнт | TEX | $\mathrm{V} D \mathrm{LD}=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=5.5 \mathrm{~V}$ | 0.1 |  | 10 | $\mu \mathrm{A}$ |
|  | Illt |  | V DD $=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=0.4 \mathrm{~V}$ | -0.1 |  | -10 | $\mu \mathrm{A}$ |
|  | IILR | $\overline{\mathrm{RST}}{ }^{* 2}$ | $\mathrm{V} D \mathrm{LD}=5.5 \mathrm{~V}, \mathrm{VIL}=0.4 \mathrm{~V}$ | -1.5 |  | -400 | $\mu \mathrm{A}$ |
|  | III | $\begin{aligned} & \text { PA to } \mathrm{PD}^{* 3}, \\ & \mathrm{PF} \text { to } \mathrm{PG}^{* 3} \\ & \mathrm{PI} \text { to } \mathrm{PK}^{* 3} \end{aligned}$ |  |  |  | -45 | $\mu \mathrm{A}$ |
|  | IIL |  | $\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{VIL}=4.0 \mathrm{~V}$ | -2.78 |  |  | $\mu \mathrm{A}$ |
| I/O leakage current | IIZ | $\begin{aligned} & \mathrm{PA} \text { to } \mathrm{PD}^{* 3}, \\ & \mathrm{PF} \text { to } \mathrm{PG}^{* 3}, \\ & \mathrm{PI} \text { to } \mathrm{PK}^{* 3}, \\ & \mathrm{PE}, \\ & \frac{\text { AN0 }}{\mathrm{RST}} * 2 \end{aligned}$ | $\begin{aligned} & V d D=5.5 \mathrm{~V} \\ & V I=0,5.5 \mathrm{~V} \end{aligned}$ |  |  | $\pm 10$ | $\mu \mathrm{A}$ |
| Open drain output leakage current ( N -ch Tr off state) | LLOH | PH | $\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V} \\ & \mathrm{VOH}=12 \mathrm{~V} \end{aligned}$ |  |  | 50 | $\mu \mathrm{A}$ |


| Item | Symbol | Pins | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply current*4 | IDD1 | Vdd | 24 MHz crystal oscillation $\begin{aligned} & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right) \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$ |  | 50 | 62 | mA |
|  | IDDS1 |  | Sleep mode $V D D=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ |  | 1.8 | 9.0 | mA |
|  | IDD2 |  | 32 kHz crystal oscillation $\begin{aligned} & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=47 \mathrm{pF}\right) \\ & \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 0.3 \mathrm{~V} \end{aligned}$ |  | 43 | 80 | $\mu \mathrm{A}$ |
|  | IDDS2 |  | Sleep mode $V D D=3 V \pm 0.3 V$ |  | 13 | 40 | $\mu \mathrm{A}$ |
|  | IdDS3 |  | Stop mode <br> (Termination of EXTAL and TEX pins crystal oscillation) <br> $\mathrm{V} D \mathrm{D}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| Input capacity | CIn | PA to PD, PE0 to PE1, PF to PG, Pl to PK, AN0 to AN3, EXTAL, RST | Clock 1MHz OV for all pins excluding measured pins |  | 10 | 20 | pF |

*1 This case applies that Port B buffer capability switching register (BUFB: 010F4h, bits 6 and $5=" 1$, 1 ") and Ports $\mathrm{G} / \mathrm{I} / \mathrm{K}$ buffer capability switching register (BUFG: 010F5h, bits $0,3,4,5$ and $6=" 1,1,1,1,1 "$ ) are ON.
*2 $\overline{\mathrm{RST}}$ pin specifies the input current when the pull-up resistor is selected, and specifies the leakage current when no resistor is selected.
*3 PA to PD, PF to PG and PI to PK pins specify the input current when the pull-up resistor is selected, and specify the leakage current when no resistor is selected.
*4 When all output pins are open.

## Electrical Characteristics

DC Characteristics (VDD $=2.7$ to 3.3 V )
( $\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

| Item | Symbol | Pins | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| High level output voltage | Vor | PA to PD, PE2 to PE7, PF to PG, Pl to PJ , PK3 to PK7 | $\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{IOH}=-0.12 \mathrm{~mA}$ | 2.5 |  |  | V |
|  |  |  | $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{IOH}=-0.45 \mathrm{~mA}$ | 2.1 |  |  | V |
|  |  | $\begin{aligned} & \text { PB5, PB6*1, } \\ & \text { PGO*1, } \\ & \text { PI5, PI6*1, } \\ & \text { PK3, PK4* } \end{aligned}$ | $\mathrm{V} D \mathrm{LD}=2.7 \mathrm{~V}, \mathrm{IOH}=-0.24 \mathrm{~mA}$ | 2.5 |  |  | V |
|  |  |  | $\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{IOH}=-0.90 \mathrm{~mA}$ | 2.1 |  |  | V |
| Low level output voltage | Vol | PA to PD, PE2 to PE7, PF to PG, PI to PJ, PK3 to PK7 | $\mathrm{V} D \mathrm{LD}=2.7 \mathrm{~V}, \mathrm{lol}=1.0 \mathrm{~mA}$ |  |  | 0.25 | V |
|  |  |  | $\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{loL}=1.4 \mathrm{~mA}$ |  |  | 0.4 | V |
|  |  | PD, PH | $\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{loL}=4.5 \mathrm{~mA}$ |  |  | 0.9 | V |
| Input current | lihe | EXTAL | V DD $=3.3 \mathrm{~V}, \mathrm{~V} \mathrm{~V}=3.3 \mathrm{~V}$ | 0.3 |  | 20 | $\mu \mathrm{A}$ |
|  | IILE |  | $\mathrm{V}_{\text {DD }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.3 \mathrm{~V}$ | -0.3 |  | -20 | $\mu \mathrm{A}$ |
|  | ІІнт | TEX | $\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{VIL}=3.3 \mathrm{~V}$ | 0.1 |  | 10 | $\mu \mathrm{A}$ |
|  | Illt |  | $\mathrm{V} D \mathrm{D}=3.3 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$ | -0.1 |  | -10 | $\mu \mathrm{A}$ |
|  | IILR | $\overline{\mathrm{RST}}{ }^{*}$ | $\mathrm{V} D \mathrm{D}=3.3 \mathrm{~V}, \mathrm{~V}$ IL $=0.3 \mathrm{~V}$ | -0.9 |  | -200 | $\mu \mathrm{A}$ |
|  | IL | $\begin{aligned} & \hline \mathrm{PA} \text { to } \mathrm{PD}^{* 3}, \\ & \mathrm{PF} \text { to } \mathrm{PG}^{* 3}, \\ & \mathrm{PI} \text { to } \mathrm{PK}^{* 3} \\ & \hline \end{aligned}$ |  |  |  | -20 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{V} D \mathrm{D}=3.3 \mathrm{~V}, \mathrm{VIL}=2.7 \mathrm{~V}$ | -1.0 |  |  | $\mu \mathrm{A}$ |
| I/O leakage current | IIz | PA to PD*3, <br> PF to $P G^{* 3}$, <br> PI to $\mathrm{PK}^{* 3}$, <br> PE, <br> AN0 to AN3 $\mathrm{RST}^{*}$ | $\begin{aligned} & \mathrm{VDD}=3.3 \mathrm{~V} \\ & \mathrm{VI}=0,3.3 \mathrm{~V} \end{aligned}$ |  |  | $\pm 10$ | $\mu \mathrm{A}$ |
| Open drain output leakage current ( N -ch Tr off state) | LLOH | PH | $\begin{aligned} & \mathrm{VDD}=3.3 \mathrm{~V} \\ & \mathrm{VoH}=12 \mathrm{~V} \end{aligned}$ |  |  | 50 | $\mu \mathrm{A}$ |


| Item | Symbol | Pins | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply current*4 | IDD1 | Vdd | 12 MHz crystal oscillation $\begin{aligned} & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right) \\ & \mathrm{VDD}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V} * 3 \end{aligned}$ |  | 12 | 30 | mA |
|  | IDDS1 |  | Sleep mode $V D D=3.0 V \pm 0.3 V$ |  | 0.7 | 3.5 | mA |
|  | IdDS3 |  | Stop mode (Termination of EXTAL and TEX pins crystal oscillation) $V D D=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| Input capacity | CIn | PA to PD, PE0 to PE1, PF to PG, Pl to PK, AN0 to AN3, EXTAL, RST | Clock 1 MHz OV for all pins excluding measured pins |  | 10 | 20 | pF |

*1 This case applies that Port B buffer capability switching register (BUFB: 010F4h, bits 6 and $5=" 1,1 "$ ) and Ports G/I/K buffer capability switching register (BUFG: 010F5h, bits $0,3,4,5$ and $6=" 1,1,1,1,1 "$ ) are ON.
*2 $\overline{\mathrm{RST}}$ pin specifies the input current when the pull-up resistor is selected, and specifies the leakage current when no resistor is selected.
*3 PA to PD, PF to PG and PI to PK pins specify the input current when the pull-up resistor is selected, and specify the leakage current when no resistor is selected.
*4 When all output pins are open.

## AC Characteristics

(1) Clock timing
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference $)$

| Item | Symbol | Pin | Conditions |  | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| System clock frequency | fc | $\begin{aligned} & \text { XTAL } \\ & \text { EXTAL } \end{aligned}$ | Fig. 1, Fig. 2 | $\mathrm{V} \mathrm{DD}=4.5$ to 5.5 V | 1 |  | 24 | MHz |
|  |  |  |  |  | 1 |  | 12 |  |
| System clock input pulse width | txL, | EXTAL | Fig. 1, Fig. $2 \quad \mathrm{~V}$ D $=4.5$ to 5.5 VExternal clock drive |  | 28 |  |  | ns |
|  | txh |  |  |  | 37.5 |  |  |  |
| System clock input rise time, fall time | tcr, tcF | EXTAL | Fig. 1, Fig. 2 External clock drive |  |  |  | 200 | ns |
| Event count input clock pulse width | $\begin{aligned} & \mathrm{t} \text { ter, } \\ & \mathrm{t} E \mathrm{~L} \end{aligned}$ | EC | Fig. 3 |  | tsys + 50*1 |  |  | ns |
| Event count input clock rise time, fall time | $\begin{aligned} & \begin{array}{l} \text { ter } \\ \text { tef } \end{array} \end{aligned}$ | EC | Fig. 3 |  |  |  | 20 | ms |
| System clock frequency | fc | $\begin{aligned} & \text { TEX } \\ & \text { TX } \end{aligned}$ | $\mathrm{VDD}=2.7$ to 5.5 V <br> Fig. 2 (32kHz clock applied condition) |  |  | 32.768 |  | kHz |
| Event count input clock pulse width | $\begin{aligned} & \mathrm{t} \text { tL, } \\ & \text { t } \mathrm{t} \boldsymbol{1} \end{aligned}$ | TEX | Fig. 3 |  | 10 |  |  | $\mu \mathrm{s}$ |
| Event count input clock rise time, fall time | $\begin{aligned} & \hline \begin{array}{l} \text { tTR, } \\ \text { tTF } \end{array} \end{aligned}$ | TEX | Fig. 3 |  |  |  | 20 | ms |

*1 tsys indicates three values according to the contents of the clock control register (CLC: 000FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits ="11")


Fig. 1. Clock timing


Fig. 2. Clock applied conditions


Fig. 3. Event count clock timing
(2) Serial transfer (CH0, CH 1 )
( $\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

| Item | Symbol | Pin | Conditions | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{CS}} \downarrow \rightarrow \overline{\mathrm{SCK}}$ <br> delay time | tocsk | $\frac{\overline{\text { SCK0 }}}{\overline{\text { SCK1 }}}$ | Chip select transfer mode ( $\overline{\mathrm{SCK}}=$ output mode) |  | 1.5tsys + 200 | ns |
| $\overline{\mathrm{CS}} \uparrow \rightarrow \overline{\mathrm{SCK}}$ floating delay time | tocskf | $\overline{\overline{\text { SCK0 }}}$ | Chip select transfer mode (SCK $=$ output mode) |  | 1.5tsys + 200 | ns |
| $\overline{\mathrm{CS}} \downarrow \rightarrow$ SO delay time | tocso | $\begin{aligned} & \text { SOO } \\ & \text { SO1 } \end{aligned}$ | Chip select transfer mode |  | 1.5tsys + 200 | ns |
| $\overline{\mathrm{CS}} \uparrow \rightarrow$ SO floating delay time | tocsof | $\begin{array}{\|l\|} \hline \text { SOO } \\ \text { SO1 } \\ \hline \end{array}$ | Chip select transfer mode |  | 1.5tsys + 200 | ns |
| $\overline{\mathrm{CS}}$ High level width | twhcs | $\frac{\overline{\mathrm{CS0}}}{\mathrm{CS1}}$ | Chip select transfer mode | tsys + 200 |  | ns |
| $\overline{\text { SCK }}$ cycle time | tkcy | $\overline{\text { SCKO }}$ | Input mode | 2tsys + 200 |  | ns |
|  |  | SCK1 | Output mode | 8000/fc |  | ns |
| $\overline{\text { SCK }}$ High and Low level width | $\begin{aligned} & \text { tкн } \\ & \text { tKL } \end{aligned}$ | $\overline{\text { SCKO }}$ | Input mode | tsys + 100 |  | ns |
|  |  | SCK1 | Output mode | 4000/fc - 50 |  | ns |
| SI input setup time (for SCK $\uparrow$ ) | tsık | $\begin{aligned} & \text { SIO } \\ & \text { SI1 } \end{aligned}$ | $\overline{\text { SCK }}$ input mode | -tsys + 100 |  | ns |
|  |  |  | $\overline{\text { SCK }}$ output mode | 200 |  | ns |
| SI input hold time (for $\overline{\text { SCK }} \uparrow$ ) | tksı | $\begin{aligned} & \text { SIO } \\ & \text { SI1 } \end{aligned}$ | $\overline{\text { SCK }}$ input mode | 2tsys +200 |  | ns |
|  |  |  | $\overline{\text { SCK }}$ output mode | 100 |  | ns |
| $\overline{\mathrm{SCK}} \downarrow \rightarrow$ SO delay time | tkso | $\begin{array}{\|l\|l\|} \text { SOO } \\ \text { SO1 } \end{array}$ | $\overline{\text { SCK }}$ input mode |  | 2 2tsys + 200 | ns |
|  |  |  | SCK output mode |  | 100 | ns |

Note 1) tsys indicates three values according to the contents of the clock control register (CLC: 000FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (upper 2 bits = "00"), 4000/fc (upper 2 bits = "01"), 16000/fc (upper 2 bits = "11")
Note 2) $\overline{\mathrm{CS}}, \overline{\mathrm{SCK}}, \mathrm{SI}$ and SO represent $\overline{\mathrm{CSO}}, \overline{\mathrm{SCKO}}, \mathrm{SIO}$ and SOO for CHO; they represent $\overline{\mathrm{CS} 1}, \overline{\mathrm{SCK}}, \mathrm{SI}$ and SO 1 for CH 1 , respectively.
Note 3) The load of SCK output mode and SO output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.
Note 4) This case applies that Port I/K output buffer capability switching register (BUFG: 010F5h, bits 6, 5, 4 and $3=" 0,0,0,0$ ") is OFF.

Serial transfer (CH0, CH1)
( $\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=2.7$ to 3.3 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

| Item | Symbol | Pin | Conditions | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{CS}} \downarrow \rightarrow \overline{\mathrm{SCK}}$ delay time | tocsk | $\overline{\overline{\text { SCK0 }}}$ | Chip select transfer mode ( $\overline{\mathrm{SCK}}=$ output mode) |  | 1.5 tsys +250 | ns |
| $\begin{array}{\|l} \hline \overline{\mathrm{CS}} \uparrow \rightarrow \overline{\mathrm{SCK}} \\ \text { floating delay time } \end{array}$ | tocskF | $\frac{\overline{\text { SCK }}}{\text { SCK1 }}$ | Chip select transfer mode (SCK $=$ output mode) |  | 1.5tsys + 250 | ns |
| $\overline{\mathrm{CS}} \downarrow \rightarrow$ SO delay time | tocso | $\begin{aligned} & \hline \text { SOO } \\ & \text { SO1 } \end{aligned}$ | Chip select transfer mode |  | 1.5tsys + 250 | ns |
| $\overline{\mathrm{CS}} \uparrow \rightarrow$ SO floating delay time | tocsof | $\begin{aligned} & \hline \text { SOO } \\ & \text { SO1 } \end{aligned}$ | Chip select transfer mode |  | 1.5tsys + 250 | ns |
| $\overline{\text { CS }}$ High level width | twhcs | $\overline{\overline{\overline{\mathrm{CSO}}}}$ | Chip select transfer mode | tsys +200 |  | ns |
| $\overline{\text { SCK }}$ cycle time | tkcy | $\frac{\overline{\text { SCK0 }}}{\text { SCK1 }}$ | Input mode | 2tsys +200 |  | ns |
|  |  |  | Output mode | 8000/fc |  | ns |
| $\overline{\text { SCK }}$ High and Low level widths | $\begin{aligned} & \text { tкн } \\ & \text { tкL } \end{aligned}$ | $\overline{\text { SCK0 }}$ | Input mode | tsys + 100 |  | ns |
|  |  |  | Output mode | 4000/fc - 100 |  | ns |
| SI input setup time (for SCK $\uparrow$ ) | tsık | $\begin{aligned} & \text { SIO } \\ & \text { SII } \end{aligned}$ | $\overline{\text { SCK }}$ input mode | -tsys + 100 |  | ns |
|  |  |  | $\overline{\text { SCK }}$ output mode | 200 |  | ns |
| SI input hold time (for SCK $\uparrow$ ) | tksı | $\begin{aligned} & \text { SIO } \\ & \text { SII } \end{aligned}$ | $\overline{\text { SCK }}$ input mode | 2tsys + 200 |  | ns |
|  |  |  | $\overline{\text { SCK }}$ output mode | 100 |  | ns |
| $\overline{\mathrm{SCK}} \downarrow \rightarrow \mathrm{SO}$ <br> delay time | tkso | $\begin{aligned} & \text { SOO } \\ & \text { SO1 } \end{aligned}$ | $\overline{\text { SCK }}$ input mode |  | 2tsys + 250 | ns |
|  |  |  | $\overline{\text { SCK }}$ output mode |  | 125 | ns |

Note 1) tsys indicates three values according to the contents of the clock control register (CLC: 000FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (upper 2 bits = "00"), 4000/fc (upper 2 bits = "01"), 16000/fc (upper 2 bits = " 11 ")
Note 2) $\overline{\mathrm{CS}}, \overline{\mathrm{SCK}}, \mathrm{SI}$ and SO represent $\overline{\mathrm{CSO}}, \overline{\mathrm{SCKO}}, \mathrm{SIO}$ and SOO for CHO; they represent $\overline{\mathrm{CS} 1}, \overline{\mathrm{SCK}}, \mathrm{SI}$ and SO 1 for CH 1 , respectively.
Note 3) The load of $\overline{\text { SCK }}$ output mode and SO output delay time is 50 pF .
Note 4) This case applies that Port I/K output buffer capability switching register (BUFG: 010F5h, bits 6, 5, 4 and $3=" 1,1,1,1 ")$ is ON.


Fig. 4. Serial transfer $\mathrm{CH} \mathbf{0}, \mathrm{CH} 1$ timing

Serial transfer (CH2)
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V} d \mathrm{~d}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

| Item | Symbol | Pin | Conditions | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { SCK }}$ cycle time | $\mathrm{tkcy}^{\prime}$ | $\overline{\text { SCK2 }}$ | Input mode | 1000 |  | ns |
|  |  |  | Output mode | 8000/fc |  | ns |
| SCK High and Low level widths | $\begin{aligned} & \mathrm{t}_{\mathrm{KKH}} \\ & \mathrm{t}_{\mathrm{KL}} \end{aligned}$ | $\overline{\text { SCK2 }}$ | Input mode | 400 |  | ns |
|  |  |  | Output mode | 4000/fc - 50 |  | ns |
| SI input setup time (for SCK $\uparrow$ ) | tsik | SI2 | $\overline{\text { SCK }}$ input mode | 100 |  | ns |
|  |  |  | SCK output mode | 200 |  | ns |
| SI input hold time (for $\overline{S C K} \uparrow$ ) | tksı | SI2 | $\overline{\text { SCK }}$ input mode | 200 |  | ns |
|  |  |  | $\overline{\text { SCK }}$ output mode | 100 |  | ns |
| SCK $\downarrow \rightarrow$ SO delay time | tkso | SO2 | $\overline{\text { SCK }}$ input mode |  | 200 | ns |
|  |  |  | $\overline{\text { SCK }}$ output mode |  | 100 | ns |

Note 1) tsys indicates three values according to the contents of the clock control register (CLC: 000FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (upper 2 bits = "00"), 4000/fc (upper 2 bits = " 01 "), 16000/fc (upper 2 bits = " 11 ")
Note 2) $\overline{\mathrm{SCK}}, \mathrm{SI}$ and SO represent $\overline{\mathrm{SCK}}$, SI2 and SO2 for CH 2 , respectively.
Note 3) The load of $\overline{\text { SCK2 }}$ output mode and SO2 output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.
Note 4) This case applies that Port B output buffer capability switching register (BUFB: 010F4h, bits 6 and $5=$ " 0,0 ") is OFF.

Serial transfer (CH2)
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to $3.3 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

| Item | Symbol | Pin | Conditions | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCK cycle time | tkcy | $\overline{\text { SCK2 }}$ | Input mode | 1000 |  | ns |
|  |  |  | Output mode | 8000/fc |  | ns |
| $\overline{\text { SCK }}$ High and Low level widths | $\begin{aligned} & \mathrm{t}_{\mathrm{KH}} \\ & \mathrm{t}_{\mathrm{KLL}} \end{aligned}$ | $\overline{\text { SCK2 }}$ | Input mode | 400 |  | ns |
|  |  |  | Output mode | 4000/fc - 100 |  | ns |
| SI input setup time (for $\overline{\mathrm{SCK}} \uparrow$ ) | tsık | SI2 | $\overline{\text { SCK }}$ input mode | 100 |  | ns |
|  |  |  | SCK output mode | 200 |  | ns |
| SI input hold time (for $\overline{S C K} \uparrow$ ) | tksı | SI2 | $\overline{\text { SCK }}$ input mode | 200 |  | ns |
|  |  |  | $\overline{\text { SCK }}$ output mode | 100 |  | ns |
| SCK $\downarrow \rightarrow$ SO delay time | tkso | SO2 | $\overline{\text { SCK }}$ input mode |  | 250 | ns |
|  |  |  | $\overline{\text { SCK }}$ output mode |  | 125 | ns |

Note 1) tsys indicates three values according to the contents of the clock control register (CLC: 000FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (upper 2 bits = "00"), 4000/fc (upper 2 bits = "01"), 16000/fc (upper 2 bits = " 11 ")
Note 2) $\overline{\mathrm{SCK}}, \mathrm{SI}$ and SO represent $\overline{\mathrm{SCK} 2}$, SI2 and SO2 for CH 2 , respectively.
Note 3) The load of $\overline{\text { SCK2 }}$ output mode and SO2 output delay time is 50 pF .
Note 4) This case applies that Port B output buffer capability switching register (BUFB: 010F4h, bits 6 and $5=$ " 1,1 ") is ON.


Fig. 5. Serial transfer CH2 timing
(3) A/D converter characteristics
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=\mathrm{AVdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{AV} \mathrm{ReF}=4.0$ to $\mathrm{AVdd}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$ reference $)$

| Item | Symbol | Pin | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolution |  |  |  |  |  | 8 | Bits |
| Linearity errror |  |  | $\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=A V_{D D}=A V_{\text {REF }}=5.0 \mathrm{~V} \\ & \mathrm{~V} s \mathrm{SS}=A V_{S S}=0 \mathrm{~V} \end{aligned}$ |  |  | $\pm 2$ | LSB |
| Absolute error |  |  |  |  |  | $\pm 3$ | LSB |
| Conversion time | tconv |  |  | 31/fadc*3, *4 |  |  | $\mu \mathrm{s}$ |
| Sampling time | tsamp |  |  | 10/fadc**, *4 |  |  | $\mu \mathrm{s}$ |
| Reference input voltage | Vref | AVref | $\mathrm{V} D \mathrm{D}=\mathrm{AVDD}=4.5$ to 5.5 V | AVdD - 0.5 |  |  | V |
| Analog input voltage | Vian | AN0 to AN11 |  | 0 |  |  | V |
| AVref current | Iref | AVref | Operation mode |  | 0.6 | 1.0 | mA |
|  | Irefs |  | Sleep mode Stop mode 32 kHz operation mode |  |  | 10 | $\mu \mathrm{A}$ |

( $\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=2.7$ to $3.3 \mathrm{~V}, \mathrm{AV}$ REF $=2.7$ to $\mathrm{AVDD}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$ reference $)$

| Item | Symbol | Pin | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resolution |  |  |  |  |  | 8 | Bits |
| Linearity errror |  |  | $\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=\mathrm{AVD}=\mathrm{AV} \text { REF }=3.0 \mathrm{~V} \\ & \mathrm{VSS}=A V \mathrm{VS}=0 \mathrm{~V} \end{aligned}$ |  |  | $\pm 2$ | LSB |
| Absolute error |  |  |  |  |  | $\pm 3$ | LSB |
| Conversion time | tconv |  |  | 31/fadc* ${ }^{\text {, } * 4}$ |  |  | $\mu \mathrm{s}$ |
| Sampling time | tsamp |  |  | 10/fadc* ${ }^{\text {a }}$ *4 |  |  | $\mu \mathrm{s}$ |
| Reference input voltage | Vref | $\mathrm{AV}_{\text {ref }}$ | $V_{D D}=A V_{D D}=2.7$ to 3.3 V | AVDD - 0.3 |  |  | V |
| Analog input voltage | Vian | AN0 to AN11 |  | 0 |  |  | V |
| AVref current | IReF | AVref | Operation mode |  | 0.4 | 0.7 | mA |
|  | Irefs |  | Sleep mode Stop mode 32 kHz operation mode |  |  | 10 | $\mu \mathrm{A}$ |


*1 Vzт: Value at which the digital conversion value changes from 00 h to 01 h and vice versa.
${ }^{*} \mathrm{~V}_{\mathrm{FT}}$ : Value at which the digital conversion value changes from FEh to FFh and vice versa.
${ }^{* 3}$ fadc indicates the below values due to the contents of bit 6 (CKS) of the A/D control register (ADC: 000F9h).

PS3 selected $\quad f_{A D C}=\mathrm{fc} / 4$
PS4 selected $\quad f_{A D C}=\mathrm{fc} / 8$
However, when PS3 is selected, fc is 12 MHz or less.
*4 Sub clock operated tconv $=34 / \mathrm{ftex}$
tsamp $=10 /$ ftex

Fig. 6. Definition of A/D converter terms
(4) Interruption, reset input ( $\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

| Item | Symbol | Pin | Conditions | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| External interruption High and Low level widths | $\begin{aligned} & t_{I H} \\ & t_{\\|} \end{aligned}$ | INTO INT1 INT2 INT3 $\frac{\text { INT4 }}{\text { NMI }}$ |  | 1 |  | $\mu \mathrm{s}$ |
| Reset input Low level width | $\mathrm{t}_{\text {RSL }}$ | $\overline{\mathrm{RST}}$ |  | 32/fc |  | $\mu \mathrm{s}$ |



Fig. 7. Interruption input timing


Fig. 8. $\overline{\operatorname{RST}}$ input timing

## Appendix

(i) Main clock

(ii) Main clock

(iii) Sub clock


Fig. 9. Recommended oscillation circuit

| Manufacturer | Model | $\mathrm{fc}(\mathrm{MHz})$ | $\mathrm{C}_{1}(\mathrm{pF})$ | $\mathrm{C}_{2}(\mathrm{pF})$ | Rd ( $\Omega$ ) | Circuit example | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MURATA MFG CO., LTD. | CSA10.0MTZ | 10.0 | 30 | 30 | 0*1 | (i) |  |
|  | CSA12.0MTZ | 12.0 |  |  |  |  |  |
|  | CSA16.00MXZ040 | 16.0 | 5 | 5 |  |  |  |
|  | CST10.0MTW* | 10.0 | 30 | 30 |  | (ii) |  |
|  | CST12.0MTW* | 12.0 |  |  |  |  |  |
|  | CST16.00MXW0C1* | 16.0 | 5 | 5 |  |  |  |
| $\begin{aligned} & \text { RIVER } \\ & \text { ELETEC } \\ & \text { CORPORATION } \end{aligned}$ | HC-49/U03 | 8.0 | 18 | 18 | $330 * 1$ | (i) |  |
|  |  | 12.0 | 12 | 12 |  |  |  |
|  |  | 16.0 | 10 | 10 |  |  |  |
| KINSEKI LTD. | HC-49/U (-S) | 8.0 | 10 | 10 | $0 * 1$ |  |  |
|  |  | 12.0 | 5 | 5 |  |  |  |
|  |  | 16.0 | Open | Open |  |  |  |
| Seiko Instruments Inc. | $\begin{aligned} & \text { VTC-200 } \\ & \text { SP-T } \end{aligned}$ | 32.768 kHz | 18 | 18 | 330k | (iii) | $C \mathrm{~L}=12.5 \mathrm{pF}$ |

* Indicates types with on-chip grounding capacitor (C1, C2).
*1 XTAL series resistor ( $\mathrm{Rd}=500 \Omega$ or less) is hard to affect noise by ESD.


## Characteristics Curve

IDD Vs. VDD


Idd vs. Vdd


IdD vs. fc
$\left(\mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, Typical $)$

IDD vs. fc

$$
\left(\mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \text { Typical }\right)
$$



Package Outline
Unit: mm

PACKAGE STRUCTURE

| SONY CODE | QFP-100P-L01 |
| :--- | :---: |
| EIAJ CODE | QFP100-P-1420 |
| JEDEC CODE | - |


| PACKAGE MATERIAL | EPOXY RESIN |
| :--- | :--- |
| LEAD TREATMENT | SOLDER PLATING |
| LEAD MATERIAL | $42 /$ COPPER ALLOY |
| PACKAGE MASS | 1.7 g |



